Galvanic vestibular stimulation counteracts hypergravity-induced plastic alteration of vestibulo-cardiovascular reflex in rats.

نویسندگان

  • Chikara Abe
  • Kunihiko Tanaka
  • Chihiro Awazu
  • Hironobu Morita
چکیده

Recent data from our laboratory demonstrated that, when rats are raised in a hypergravity environment, the sensitivity of the vestibulo-cardiovascular reflex decreases. In a hypergravity environment, static input to the vestibular system is increased; however, because of decreased daily activity, phasic input to the vestibular system may decrease. This decrease may induce use-dependent plasticity of the vestibulo-cardiovascular reflex. Accordingly, we hypothesized that galvanic vestibular stimulation (GVS) may compensate the decrease in phasic input to the vestibular system, thereby preserving the vestibulo-cardiovascular reflex. To examine this hypothesis, we measured horizontal and vertical movements of rats under 1-G or 3-G environments as an index of the phasic input to the vestibular system. We then raised rats in a 3-G environment with or without GVS for 6 days and measured the pressor response to linear acceleration to examine the sensitivity of the vestibulo-cardiovascular reflex. The horizontal and vertical movement of 3-G rats was significantly less than that of 1-G rats. The pressor response to forward acceleration was also significantly lower in 3-G rats (23 +/- 1 mmHg in 1-G rats vs. 12 +/- 1 mmHg in 3-G rats). The pressor response was preserved in 3-G rats with GVS (20 +/- 1 mmHg). GVS stimulated Fos expression in the medial vestibular nucleus. These results suggest that GVS stimulated vestibular primary neurons and prevent hypergravity-induced decrease in sensitivity of the vestibulo-cardiovascular reflex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impairment of vestibular-mediated cardiovascular response and motor coordination in rats born and reared under hypergravity.

It is well known that environmental stimulation is important for the proper development of sensory function. The vestibular system senses gravitational acceleration and then alters cardiovascular and motor functions through reflex pathways. The development of vestibular-mediated cardiovascular and motor functions may depend on the gravitational environment present at birth and during subsequent...

متن کامل

Long-term exposure to microgravity impairs vestibulo-cardiovascular reflex

The vestibular system is known to have an important role in controlling blood pressure upon posture transition (vestibulo-cardiovascular reflex, VCR). However, under a different gravitational environment, the sensitivity of the vestibular system may be altered. Thus, the VCR may become less sensitive after spaceflight because of orthostatic intolerance potentially induced by long-term exposure ...

متن کامل

Vestibulo-ocular monitoring as a predictor of outcome after severe traumatic brain injury

INTRODUCTION Based on the knowledge that traumatic brainstem damage often leads to alteration in brainstem functions, including the vestibulo-ocular reflex, the present study is designed to determine whether prediction of outcome in the early phase after severe traumatic brain injury is possible by means of vestibulo-ocular monitoring. METHODS Vestibulo-ocular monitoring is based on video-ocu...

متن کامل

What Does Galvanic Vestibular Stimulation Actually Activate: Response

et al., 2012). The sense of roll is consistent with a host of other studies using GVS (Fitzpatrick et al., 1994; Inglis et al., 1995; Day et al., 1997; Zink et al., 1997; Day and Cole, 2002; Scinicariello et al., 2002/2003; Wardman et al., 2003a,b; see Fitzpatrick and Day, 2004 for review). Modeled on this research, we used 2–3 mA currents in lightly anesthetized rats and found strong activatio...

متن کامل

Central Adaptation to Repeated Galvanic Vestibular Stimulation: Implications for Pre-Flight Astronaut Training

Healthy subjects (N = 10) were exposed to 10-min cumulative pseudorandom bilateral bipolar Galvanic vestibular stimulation (GVS) on a weekly basis for 12 weeks (120 min total exposure). During each trial subjects performed computerized dynamic posturography and eye movements were measured using digital video-oculography. Follow up tests were conducted 6 weeks and 6 months after the 12-week adap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 107 4  شماره 

صفحات  -

تاریخ انتشار 2009